Bridging MCP and A2A
The AI agent ecosystem is fragmented. Google's Agent-to-Agent (A2A) protocol and Anthropic's Model Context Protocol (MCP) represent different philosophies for agent communication. Here's how ArtCafe.ai provides seamless interoperability between these protocols and more.
The Protocol Problem
Different organizations have created their own agent communication standards:
- MCP (Model Context Protocol): Anthropic's approach for context sharing
- A2A (Agent-to-Agent): Google's direct communication protocol
- OpenAI Assistants API: Function calling and tool use
- LangChain Hub: Chain-based agent orchestration
- AutoGPT Protocol: Autonomous agent communication
Each has its strengths, but they don't talk to each other.
Universal Translation Layer
ArtCafe.ai acts as a universal translator between protocols:
// MCP agent publishes mcp_agent.publish_context({ "type": "context_update", "data": { "user_intent": "analyze document", "document_id": "doc_123", "metadata": {...} } }); // Automatically translated for A2A agents // A2A agent receives: { "from": "mcp_agent_01", "to": "a2a_agent_02", "message_type": "task_request", "payload": { "task": "analyze_document", "parameters": { "document_id": "doc_123", "context": {...} } } }
Protocol Adapters
MCP Adapter
class MCPAdapter: def __init__(self, artcafe_client): self.client = artcafe_client def send_context(self, context): # Convert MCP context to ArtCafe message message = { "type": "mcp.context", "data": context, "protocol": "mcp", "version": "1.0" } self.client.publish("protocols.mcp", message) def receive_context(self, callback): # Subscribe to MCP-compatible messages self.client.subscribe("protocols.mcp.>", callback)
A2A Adapter
class A2AAdapter: def __init__(self, artcafe_client): self.client = artcafe_client def send_message(self, to_agent, message): # Convert A2A message to ArtCafe format artcafe_msg = { "type": "a2a.message", "to": to_agent, "payload": message, "protocol": "a2a", "version": "1.0" } self.client.publish(f"agents.{to_agent}", artcafe_msg) def register_handler(self, message_type, handler): # Handle A2A-style messages def wrapper(msg): if msg.get("protocol") == "a2a": handler(msg["payload"]) self.client.subscribe(f"agents.{self.agent_id}", wrapper)
Semantic Translation
Beyond format conversion, we translate semantics:
class SemanticTranslator: def translate_mcp_to_a2a(self, mcp_msg): """Convert MCP concepts to A2A equivalents""" # MCP context updates → A2A state messages if mcp_msg["type"] == "context_update": return { "message_type": "state_change", "state": mcp_msg["data"] } # MCP tool calls → A2A function requests elif mcp_msg["type"] == "tool_call": return { "message_type": "function_request", "function": mcp_msg["tool"], "arguments": mcp_msg["parameters"] } def translate_a2a_to_mcp(self, a2a_msg): """Convert A2A concepts to MCP equivalents""" # A2A task requests → MCP context if a2a_msg["message_type"] == "task_request": return { "type": "context_update", "data": { "task": a2a_msg["task"], "parameters": a2a_msg["parameters"] } }
Cross-Protocol Workflows
Enable agents using different protocols to work together:
# Workflow mixing MCP and A2A agents workflow = CrossProtocolWorkflow() # MCP agent provides context workflow.add_step( MCPAgent("context_provider"), output="enriched_context" ) # A2A agent processes data workflow.add_step( A2AAgent("data_processor"), input="enriched_context", output="processed_data" ) # OpenAI Assistant generates response workflow.add_step( OpenAIAssistant("responder"), input="processed_data", output="final_response" ) # Execute seamlessly result = await workflow.run(initial_data)
Protocol Features Mapping
Context Handling
# MCP's context windows mcp_context = { "conversation_history": [...], "relevant_documents": [...], "user_preferences": {...} } # Mapped to A2A's state management a2a_state = { "agent_memory": { "short_term": conversation_history, "long_term": relevant_documents }, "configuration": user_preferences }
Tool/Function Calling
# OpenAI function calling openai_function = { "name": "get_weather", "parameters": { "location": "San Francisco" } } # Translated to MCP tool use mcp_tool = { "tool": "weather_service", "action": "get_current", "context": { "location": "San Francisco" } } # And A2A service request a2a_request = { "service": "weather", "method": "getCurrentWeather", "args": ["San Francisco"] }
Protocol Negotiation
Agents automatically negotiate the best protocol:
class ProtocolNegotiator: def negotiate(self, agent_capabilities): # Find common protocols common = set(self.protocols) & set(agent_capabilities) if not common: # Use ArtCafe as bridge return "artcafe_bridge" # Prefer native protocol if available priority = ["mcp", "a2a", "openai", "langchain"] for protocol in priority: if protocol in common: return protocol
Real-World Integration Example
# Company has existing MCP agents mcp_nlp = MCPAgent("nlp_analyzer") mcp_knowledge = MCPAgent("knowledge_base") # Partner uses A2A agents a2a_validator = A2AAgent("data_validator") a2a_enricher = A2AAgent("data_enricher") # New team uses OpenAI openai_gen = OpenAIAssistant("content_generator") # All work together seamlessly pipeline = ArtCafePipeline() pipeline.connect([ mcp_nlp, a2a_validator, mcp_knowledge, a2a_enricher, openai_gen ]) # Process data through mixed protocols result = await pipeline.process(user_request)
Performance Considerations
Protocol translation overhead is minimal:
- Translation latency: <1ms
- Message overhead: ~5% for metadata
- Semantic mapping: Cached after first use
- Direct routing: When same protocol detected
Future-Proof Design
As new protocols emerge, adding support is simple:
# Add new protocol adapter class NewProtocolAdapter(ProtocolAdapter): def translate_to_artcafe(self, message): # Define translation logic pass def translate_from_artcafe(self, message): # Define reverse translation pass # Register with system protocol_registry.register("new_protocol", NewProtocolAdapter)
The Best of All Worlds
With ArtCafe.ai, you don't have to choose:
- Use MCP for context management
- Use A2A for direct agent communication
- Use OpenAI for advanced reasoning
- Use LangChain for complex workflows
They all work together, automatically translated and routed through our universal message bus. Build with the tools you know, integrate with everything else.