The Next Generation of Multi-Agent AI: A Scalable Pub/Sub Architecture
Executive Summary
Traditional multi-agent AI systems are hitting a wall. Request-response architectures create bottlenecks. Rigid pipelines can't adapt. Orchestration becomes a nightmare at scale.
We've developed a revolutionary approach using NATS pub/sub messaging that enables LLM agents to operate independently, scale linearly, and self-organize into powerful collaborative systems. This architecture solves the fundamental problems plaguing multi-agent AI deployments today.
The Problem: Why Current Multi-Agent Systems Fail
1. The Sequential Bottleneck
Current systems process agent interactions sequentially. When Agent A needs 5 seconds to think, Agents B, C, and D wait idle. With 10 agents in a chain, simple tasks take minutes instead of seconds.
2. The Orchestration Complexity
Traditional architectures require complex orchestration logic:
# The old way - brittle and unmaintainable
result1 = agent1.process(task)
if result1.success:
result2 = agent2.process(result1)
result3 = agent3.process(result1)
final = agent4.combine(result2, result3)
3. The Scaling Ceiling
Point-to-point connections create an n² problem. 10 agents need 45 connections. 100 agents need 4,950. The system becomes unmaintainable.
4. The Context Loss Problem
Passing context between agents leads to information loss, duplication, and inconsistency. Each handoff risks dropping critical information.
The Solution: Event-Driven AI with NATS
Our architecture treats agent communication as an event stream rather than a call chain. Agents publish their needs and subscribe to relevant topics, creating a self-organizing system that scales naturally.
Core Architecture
┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ Agent A │ │ Agent B │ │ Agent C │ │ (Analysis) │ │ (Research) │ │ (Synthesis) │ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘ │ │ │ └───────────────────┴────────────────────┘ │ ┌──────▼──────┐ │ NATS │ │ Message │ │ Bus │ └──────┬──────┘ │ ┌───────────────────┴────────────────────┐ │ │ │ ┌──────▼──────┐ ┌──────▼──────┐ ┌──────▼──────┐ │ Agent D │ │ Agent E │ │ Agent F │ │ (Coding) │ │(Fact Check) │ │ (Review) │ └─────────────┘ └─────────────┘ └─────────────┘
✓ True Parallel Processing
- • All agents work simultaneously
- • 10x faster than sequential processing
- • No agent blocks another
✓ Linear Scalability
- • Add agents without modifying code
- • Automatic load balancing
- • No central bottleneck
✓ Self-Organizing Workflows
- • Agents subscribe to their capabilities
- • Workflows emerge naturally
- • Dynamic adaptation to scenarios
✓ Complete Observability
- • Every decision is an event
- • Full audit trail
- • Replay any scenario
Message Framework Specification
Core Message Structure
interface AgentMessage {
// Message Metadata
id: string // Unique message ID
timestamp: number // Unix timestamp
version: "1.0" // Protocol version
// Message Routing
type: MessageType // "task" | "result" | "event" | "query"
source: AgentIdentity // Who sent this
target?: string // Optional specific recipient
replyTo?: string // Topic for responses
correlationId?: string // Links related messages
// LLM-Specific Context
context: {
conversationId: string // Thread/session ID
parentMessageId?: string // For message chains
history?: Message[] // Conversation history
maxHistory?: number // Limit context size
metadata: Record<string, any> // User info, preferences
}
// Payload
payload: {
content: any // The actual task/result/event
model?: string // Which LLM model to use
parameters?: LLMParams // Temperature, max_tokens, etc.
constraints?: Constraints // Time limits, cost limits
}
// Routing Hints
routing: {
priority: number // 0-9, higher = more urgent
capabilities?: string[] // Required agent capabilities
exclusions?: string[] // Agents to exclude
timeout?: number // Message expiry (ms)
}
}
Topic Structure
Topics follow a hierarchical namespace for easy filtering and subscription:
agents.{environment}.{message_type}.{domain}.{specificity}
Examples:
agents.prod.task.analysis.sentiment
agents.prod.result.generation.code
agents.prod.event.status.heartbeat
agents.prod.stream.response.{streamId}
Quick Start Guide
1. Install Dependencies
pip install nats-py pydantic openai anthropic
2. Create Your First Agent
import asyncio
from nats.aio.client import Client as NATS
from pydantic import BaseModel
from typing import Optional, List, Dict, Any
import json
import uuid
from datetime import datetime
class AgentMessage(BaseModel):
id: str
timestamp: float
version: str = "1.0"
type: str
source: Dict[str, str]
target: Optional[str] = None
replyTo: Optional[str] = None
correlationId: Optional[str] = None
context: Dict[str, Any]
payload: Dict[str, Any]
routing: Dict[str, Any]
class BaseAgent:
def __init__(self, agent_id: str, capabilities: List[str]):
self.agent_id = agent_id
self.capabilities = capabilities
self.nats = NATS()
async def connect(self, servers=["nats://localhost:4222"]):
await self.nats.connect(servers=servers)
# Subscribe to relevant topics
for capability in self.capabilities:
await self.nats.subscribe(
f"agents.prod.task.{capability}.*",
cb=self.handle_task
)
# Announce presence
await self.announce()
async def announce(self):
message = AgentMessage(
id=str(uuid.uuid4()),
timestamp=datetime.now().timestamp(),
type="event",
source={"id": self.agent_id, "type": "agent"},
context={"conversationId": "system"},
payload={
"content": {
"event": "agent_online",
"capabilities": self.capabilities
}
},
routing={"priority": 0}
)
await self.nats.publish(
"agents.prod.event.status.online",
message.json().encode()
)
3. Create Specialized Agents
from openai import AsyncOpenAI
class AnalysisAgent(BaseAgent):
def __init__(self):
super().__init__("analysis_001", ["analysis", "sentiment"])
self.client = AsyncOpenAI()
async def process_with_llm(self, message: AgentMessage) -> Dict:
start_time = datetime.now()
# Extract task content
task = message.payload["content"]
# Call LLM
response = await self.client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an expert analyst."},
{"role": "user", "content": task["instruction"]}
],
temperature=0.7
)
# Calculate metrics
latency = (datetime.now() - start_time).total_seconds() * 1000
return {
"success": True,
"data": response.choices[0].message.content,
"confidence": 0.95,
"reasoning": "Analysis completed successfully",
"tokens": response.usage.total_tokens,
"latency": latency
}
Advanced Patterns
1. Streaming Responses
class StreamingAgent(BaseAgent):
async def stream_response(self, task_id: str, generator):
sequence = 0
async for chunk in generator:
stream_msg = AgentMessage(
id=str(uuid.uuid4()),
timestamp=datetime.now().timestamp(),
type="stream",
source={"id": self.agent_id, "type": "agent"},
correlationId=task_id,
context={"conversationId": task_id},
payload={
"sequenceNumber": sequence,
"isFirst": sequence == 0,
"isFinal": False,
"chunk": chunk
},
routing={"priority": 5}
)
await self.nats.publish(
f"agents.prod.stream.response.{task_id}",
stream_msg.json().encode()
)
sequence += 1
2. Tool Calling Integration
class ToolCallingAgent(BaseAgent):
def __init__(self):
super().__init__("tool_caller_001", ["tools"])
self.tools = {}
def register_tool(self, name: str, func: callable, description: str):
self.tools[name] = {
"function": func,
"description": description
}
async def process_with_llm(self, message: AgentMessage) -> Dict:
# LLM decides which tool to call
tool_call = await self.determine_tool_call(message)
if tool_call:
# Execute tool
result = await self.tools[tool_call["name"]]["function"](
**tool_call["parameters"]
)
# Return tool result
return {
"success": True,
"data": result,
"tool_used": tool_call["name"]
}
3. Context Management
class ContextManager:
def __init__(self, max_tokens: int = 4000):
self.max_tokens = max_tokens
def compress_history(self, messages: List[Message]) -> List[Message]:
"""Intelligently compress conversation history"""
if not messages:
return []
# Keep recent messages intact
recent = messages[-5:]
older = messages[:-5]
if older:
# Summarize older messages
summary = self.summarize_messages(older)
return [summary] + recent
return recent
Production Deployment
Docker Compose Setup
version: '3.8'
services:
nats:
image: nats:latest
ports:
- "4222:4222"
- "8222:8222"
command: ["--jetstream", "--store_dir", "/data"]
volumes:
- nats-data:/data
analysis-agent:
build: ./agents/analysis
environment:
- NATS_URL=nats://nats:4222
- OPENAI_API_KEY=${OPENAI_API_KEY}
depends_on:
- nats
deploy:
replicas: 3
code-agent:
build: ./agents/code
environment:
- NATS_URL=nats://nats:4222
- OPENAI_API_KEY=${OPENAI_API_KEY}
depends_on:
- nats
deploy:
replicas: 2
orchestrator:
build: ./orchestrator
environment:
- NATS_URL=nats://nats:4222
depends_on:
- nats
ports:
- "8000:8000"
volumes:
nats-data:
Monitoring and Observability
from opentelemetry import trace
from prometheus_client import Counter, Histogram
# Metrics
task_counter = Counter('agent_tasks_total', 'Total tasks processed', ['agent_id', 'status'])
task_duration = Histogram('agent_task_duration_seconds', 'Task processing duration', ['agent_id'])
class MonitoredAgent(BaseAgent):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.tracer = trace.get_tracer(__name__)
async def handle_task(self, msg):
with self.tracer.start_as_current_span("handle_task") as span:
span.set_attribute("agent.id", self.agent_id)
start_time = datetime.now()
try:
await super().handle_task(msg)
task_counter.labels(agent_id=self.agent_id, status="success").inc()
except Exception as e:
task_counter.labels(agent_id=self.agent_id, status="error").inc()
span.record_exception(e)
raise
finally:
duration = (datetime.now() - start_time).total_seconds()
task_duration.labels(agent_id=self.agent_id).observe(duration)
Security Best Practices
import jwt
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
class SecureAgent(BaseAgent):
def __init__(self, *args, private_key, public_keys, **kwargs):
super().__init__(*args, **kwargs)
self.private_key = private_key
self.public_keys = public_keys # Dict of agent_id -> public_key
async def publish_secure(self, topic: str, message: AgentMessage):
# Sign message
signature = self.sign_message(message)
message.metadata = message.metadata or {}
message.metadata["signature"] = signature
# Encrypt sensitive data if needed
if message.context.get("sensitive"):
message.payload = self.encrypt_payload(message.payload)
await self.nats.publish(topic, message.json().encode())
def verify_message(self, message: AgentMessage) -> bool:
if "signature" not in message.metadata:
return False
agent_id = message.source["id"]
if agent_id not in self.public_keys:
return False
# Verify signature
return self.verify_signature(
message,
message.metadata["signature"],
self.public_keys[agent_id]
)
Protocol Interoperability
MCP Integration
Bridge between NATS pub/sub and MCP protocol for tool calling and resource access.
class MCPBridge:
async def register_mcp_server(
self,
server_id: str,
mcp_server
):
# Subscribe to MCP requests
await self.nats.subscribe(
f"agents.prod.mcp.{server_id}",
cb=lambda msg: self.handle_mcp_request(
server_id, msg
)
)
A2A Protocol Support
Enable direct agent-to-agent negotiations when needed for critical communications.
class A2AAdapter:
async def initiate_negotiation(
self,
target_agents: List[str]
):
# Send negotiation proposal
for agent in target_agents:
await self.nats.publish(
f"agents.prod.a2a.negotiate.{agent}",
message.json().encode()
)
Ready to Build?
Start implementing your own scalable multi-agent system with our comprehensive SDK and tools.