Introduction to Agent Swarms
Agent swarms are collections of agents that work together to solve complex problems. Like swarms in nature, they exhibit emergent intelligence through simple individual behaviors and communication.
Swarm Architecture
Core Components
- Scout Agents: Discover and analyze tasks
- Worker Agents: Execute specific operations
- Coordinator Agents: Orchestrate collaboration
- Memory Agents: Maintain shared state
Building Your First Swarm
Step 1: Define the Swarm Protocol
# swarm_protocol.py
from dataclasses import dataclass
from typing import List, Dict, Any
from enum import Enum
class SwarmRole(Enum):
SCOUT = "scout"
WORKER = "worker"
COORDINATOR = "coordinator"
MEMORY = "memory"
@dataclass
class SwarmTask:
id: str
type: str
data: Dict[str, Any]
requirements: List[str]
priority: int = 0
@dataclass
class SwarmState:
active_tasks: List[SwarmTask]
completed_tasks: List[str]
agent_capabilities: Dict[str, List[str]]
performance_metrics: Dict[str, float]
Step 2: Implement Scout Agents
from artcafe_sdk import Agent
import asyncio
class ScoutAgent(Agent):
def __init__(self, scout_id: int):
super().__init__(
name=f"scout-{scout_id}",
capabilities=["discovery", "analysis"]
)
async def on_start(self):
await self.subscribe("environment.events")
await self.subscribe("swarm.coordination.requests")
# Start periodic environment scanning
asyncio.create_task(self.scan_environment())
async def scan_environment(self):
while True:
# Simulate environment scanning
await asyncio.sleep(5)
# Discover new tasks
task = await self.discover_task()
if task:
await self.publish("swarm.tasks.discovered", {
"task": task,
"scout_id": self.name,
"timestamp": datetime.now().isoformat()
})
async def discover_task(self):
# Implement task discovery logic
# This could involve API calls, sensor readings, etc.
pass
Step 3: Create Worker Agents
class WorkerAgent(Agent):
def __init__(self, worker_id: int, capabilities: List[str]):
super().__init__(
name=f"worker-{worker_id}",
capabilities=capabilities
)
self.current_task = None
async def on_start(self):
# Subscribe to task assignments
await self.subscribe(f"swarm.tasks.assign.{self.name}")
await self.subscribe("swarm.tasks.available")
# Announce capabilities
await self.publish("swarm.agents.online", {
"agent_id": self.name,
"capabilities": self.capabilities,
"status": "ready"
})
async def on_message(self, message):
if message.topic.startswith("swarm.tasks.assign"):
await self.handle_task_assignment(message.data)
elif message.topic == "swarm.tasks.available":
await self.bid_on_task(message.data)
async def bid_on_task(self, task_data):
task = SwarmTask(**task_data)
# Check if we can handle this task
if self.can_handle_task(task):
bid_score = self.calculate_bid_score(task)
await self.publish("swarm.tasks.bids", {
"task_id": task.id,
"agent_id": self.name,
"bid_score": bid_score,
"estimated_time": self.estimate_completion_time(task)
})
def can_handle_task(self, task: SwarmTask) -> bool:
return all(req in self.capabilities for req in task.requirements)
Step 4: Implement the Coordinator
class CoordinatorAgent(Agent):
def __init__(self):
super().__init__(
name="coordinator-prime",
capabilities=["orchestration", "decision-making"]
)
self.swarm_state = SwarmState(
active_tasks=[],
completed_tasks=[],
agent_capabilities={},
performance_metrics={}
)
async def on_start(self):
await self.subscribe("swarm.tasks.discovered")
await self.subscribe("swarm.tasks.bids")
await self.subscribe("swarm.tasks.completed")
await self.subscribe("swarm.agents.online")
await self.subscribe("swarm.agents.offline")
async def on_message(self, message):
if message.topic == "swarm.tasks.discovered":
await self.handle_new_task(message.data)
elif message.topic == "swarm.tasks.bids":
await self.handle_task_bid(message.data)
elif message.topic == "swarm.tasks.completed":
await self.handle_task_completion(message.data)
async def handle_new_task(self, data):
task = SwarmTask(**data["task"])
self.swarm_state.active_tasks.append(task)
# Announce task availability
await self.publish("swarm.tasks.available", task.__dict__)
# Start bid collection timer
asyncio.create_task(self.collect_bids(task.id))
async def collect_bids(self, task_id: str):
# Wait for bids
await asyncio.sleep(2.0)
# Select best bidder
best_agent = await self.select_best_bidder(task_id)
if best_agent:
await self.assign_task(task_id, best_agent)
Step 5: Add Collective Memory
class MemoryAgent(Agent):
def __init__(self):
super().__init__(
name="memory-core",
capabilities=["storage", "retrieval", "analysis"]
)
self.shared_memory = {}
self.task_history = []
async def on_start(self):
await self.subscribe("swarm.memory.store")
await self.subscribe("swarm.memory.query")
await self.subscribe("swarm.tasks.completed")
async def on_message(self, message):
if message.topic == "swarm.memory.store":
await self.store_memory(message.data)
elif message.topic == "swarm.memory.query":
await self.retrieve_memory(message.data)
elif message.topic == "swarm.tasks.completed":
await self.learn_from_task(message.data)
async def learn_from_task(self, task_data):
# Extract patterns and insights
self.task_history.append(task_data)
# Update performance metrics
if len(self.task_history) > 10:
insights = self.analyze_performance()
await self.publish("swarm.insights.performance", insights)
Advanced Swarm Patterns
Consensus Mechanisms
class ConsensusManager:
def __init__(self, agent: Agent):
self.agent = agent
self.votes = {}
async def propose_action(self, action: str, data: Any):
proposal_id = str(uuid.uuid4())
await self.agent.publish("swarm.consensus.proposal", {
"id": proposal_id,
"action": action,
"data": data,
"proposer": self.agent.name
})
# Collect votes
votes = await self.collect_votes(proposal_id, timeout=5.0)
return self.evaluate_consensus(votes)
def evaluate_consensus(self, votes: List[Dict]) -> bool:
# Simple majority
yes_votes = sum(1 for v in votes if v["vote"] == "yes")
return yes_votes > len(votes) / 2
Dynamic Role Assignment
class AdaptiveAgent(Agent):
def __init__(self, agent_id: int):
super().__init__(name=f"adaptive-{agent_id}")
self.current_role = SwarmRole.WORKER
self.performance_score = 0.5
async def evaluate_role_change(self):
# Analyze swarm needs
swarm_metrics = await self.get_swarm_metrics()
# Determine optimal role
if swarm_metrics["scout_shortage"] and self.performance_score > 0.7:
await self.switch_role(SwarmRole.SCOUT)
elif swarm_metrics["coordinator_needed"] and self.performance_score > 0.9:
await self.switch_role(SwarmRole.COORDINATOR)
Running the Swarm
# launch_swarm.py
import asyncio
from swarm_agents import ScoutAgent, WorkerAgent, CoordinatorAgent, MemoryAgent
async def launch_swarm():
# Create coordinator and memory
coordinator = CoordinatorAgent()
memory = MemoryAgent()
# Create scouts
scouts = [ScoutAgent(i) for i in range(3)]
# Create workers with different capabilities
workers = [
WorkerAgent(0, ["image_processing", "ocr"]),
WorkerAgent(1, ["nlp", "translation"]),
WorkerAgent(2, ["data_analysis", "ml"]),
WorkerAgent(3, ["web_scraping", "api_integration"]),
WorkerAgent(4, ["image_processing", "ml"])
]
# Start all agents
all_agents = [coordinator, memory] + scouts + workers
await asyncio.gather(*[agent.start() for agent in all_agents])
print(f"Swarm launched with {len(all_agents)} agents")
# Keep running
await asyncio.Event().wait()
if __name__ == "__main__":
asyncio.run(launch_swarm())
Monitoring and Optimization
Swarm Dashboard Metrics
- Active agents by role
- Task completion rate
- Average task duration
- Communication overhead
- Consensus success rate
Performance Optimization
-
Reduce Message Overhead
- Use topic hierarchies efficiently
- Batch related messages
- Implement message priorities
-
Balance Work Distribution
- Monitor agent utilization
- Implement work stealing
- Use predictive task assignment
-
Optimize Consensus
- Use quorum-based decisions
- Implement timeout mechanisms
- Cache frequent decisions
Next Steps
- Implement specialized swarm behaviors (foraging, flocking)
- Add machine learning for task prediction
- Create hybrid swarms with different agent types
- Build fault-tolerant consensus protocols